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Abstract
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Microscope (OQM) is a narrow band visible light microscope capable of measuring both am-
plitude and phase of a scattered field. We develop a diffraction tomography, that is, wave-
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1 Introduction

The Center for Subsurface Sensing & Imaging System’s (CenSSIS) Optical Quadrature Micro-
scope (OQM) is a narrow band visible light microscope capable of measuring both amplitude and
phase of a scattered field. We develop a diffraction tomography, that is, wave-based, scattered field
inversion and imaging algorithm, for reconstructing the refractive index of the scattering object.

The purposes of this report is to develop a wave-based inversion and imaging algorithm, not to
describe the OQM. We refer the reader to the references [1, 2,3, 4, 5] for a thorough development of
the OQM. Our fundamental assumption, here, is that the OQM can measure a fully complex field
(simultaneously measure the magnitude and phase of a scattered field) at a single measurement
plane. We also assume the incident field is planar and that both it and measurement plane are
rotated about the scattering object (object under evaluation) at multiple angular locations uniformly
distributed over360◦ as indicated in Figure 1.

We develop our forward scattering model in the next section including derivations under the
Born (amplitude) and Rytov (phase) approximations. The inversion algorithm is described in Sec-
tion 3.

2 Total Field Propagation

We begin by considering the wave equation
[

∇2 − n2(r)

c20
∂2
t

]

ψtot(r,Rt
n, t) = −p(r,Rt

n, t), (1)

in which we have assumed a variable medium through therefractive index

n(r) ≡ c0
c(r)

. (2)

n(r) to represents the presence of a scattering object, that is, the object under evaluation.ψtot(r,Rt
n, t)

is thetotal field (the sum of the scattered and incident fields),p(r,Rt
n, t) is the incident pulse ap-

plied to then-th transmitter located atRt
n, andc0 is the background wave speed. We Fourier

transform Eqn. 1 using the temporal transform of Appendix A:
[

∇2 + k2
0n

2(r)
]

ψtot(r,Rt
n, ω) = −p(r,Rt

n, ω), (3)

where thebackground wavenumberis defined as

k0 ≡ ω

c0
.

When solving the forward problem, it is frequently convenient to cast Eqn. 3 into an integral
equation. We do so by addingk0ψ

tot(r,Rt
n, ω) to both sides of Eqn. 3, and moving the inhomoge-

neous term to the right hand side:
[

∇2 + k2
0

]

ψtot(r,Rt
n, ω) = −p(r) −

[

k2
0n

2(r) − k2
0

]

ψtot(r,Rt
n, ω). (4)
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Define theobject functionas

o(r) ≡ n2(r) − 1, (5)

and express Eqn. 4 as
[

∇2 + k2
0

]

ψtot(r,Rt
n, ω) = −p(r,Rt

n, ω) − k2
0o(r)ψ

tot(r,Rt
n, ω). (6)

The first term on the right-hand side of Eqn. 6,p(r,Rt
n, ω), is theprimary source. The second,

source-like, term on the right-hand side,k2
0o(r)ψ

tot(r,Rt
n, ω), is known as thesecondary source.

We may use Green’s theorem to cast the differential equationof Eqn. 6 into an integral equation [6],

ψtot(r,Rt
n, ω) =

∫

dr′ G0(r, r
′, ω) p(r′,Rt

n, ω)
︸ ︷︷ ︸

ψinc(r,Rt
n,ω)

+

k2
0

∫

dr′ G0(r, r
′, ω) o(r′) ψtot(r′,Rt

n, ω)
︸ ︷︷ ︸

ψscat(r,Rt
n,ω)

, (7)

where the background Green function satisfies
[

∇2 + k2
0

]

G0(r, r
′, ω) = −δ(r − r

′). (8)

We define theprimary, incident, or backgroundfield as

ψinc(r,Rt
n, ω) ≡

∫

dr′ G0(r, r
′, ω) p(r′,Rt

n, ω), (9)

so that Eqn. 7 reads

ψtot(r,Rt
n, ω) = ψinc(r,Rt

n, ω) + k2
0

∫

dr′ G0(r, r
′, ω) o(r′) ψtot(r′,Rt

n, ω). (10)

Thescattered fieldis then defined as the difference between the total and incident fields,

ψscat(r,Rt
n, ω) ≡ ψtot(r,Rt

n, ω) − ψinc(r,Rt
n, ω)

= k2
0

∫

dr′ G0(r, r
′, ω) o(r′) ψtot(r′,Rt

n, ω). (11)

We observe that with the primary field satisfying
[

∇2 + k2
0

]

ψinc(r,Rt
n, ω) = −p(r,Rt

n, ω), (12)

the scattered field obeys
[

∇2 + k2
0

]

ψscat(r,Rt
n, ω) = −k2

0o(r)ψ
tot(r,Rt

n, ω), (13)
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or alternatively,
[

∇2 + k2
0n

2(r)
]

ψscat(r,Rt
n, ω) = −k2

0o(r)ψ
inc(r,Rt

n, ω). (14)

The integral equation of Eqn. 11 is non-linear in that the scattered field appears in both sides of
the equation. The differential equation of Eqn. 14 offers the problem of having spatially dependent
scattering operator. Exact analytic solutions for the scattered field exist only for a limited set of
scattering objects. Numerical solutions are readily available but not appropriate for an arbitrary
object tomographic inversion algorithm. Thus, we wish to simplify our forward model. In the
following section we simplify the model under the Born approximation. In Section 2.2 use the
Rytov approximation. We note that the Born and Rytov approximations are the two most practical
simplifications when little is known of the scattering object. When more is known of the object,
this prior information can be included in the model via a modified Green function or through a
model-based processing approach and an (fast) forward propagator.

2.1 Born Approximation

One potential method of simplifying Eqn. 14 for solving is touse a perturbation approach. We
express the refractive index and scattered field as [7]

n2(r) = n2
0(r) + εn1(r) + ε2n2(r) + · · ·

︸ ︷︷ ︸

≡ δn(r)

,

ψscat(r,Rt
n, ω) = ψscatDWB(r,Rt

n, ω) + εψscat1 (r,Rt
n, ω) + ε2ψscat2 (r,Rt

n, ω) + · · · ,

(15)

respectively, substitute them into Eqn. 14, and equate likepowers ofε. Doing so we obtain the
follow set of equations:

[

∇2 + k2
0n

2
0(r)

]

ψscatDWB(r,Rt
n, ω) = −k2

0o(r)ψ
inc(r,Rt

n, ω), (16)
[

∇2 + k2
0n

2
0(r)

]

ψscat1 (r,Rt
n, ω) = −k2

0n1(r)ψ
scat
DWB(r,Rt

n, ω), (17)
[

∇2 + k2
0n

2
0(r)

]

ψscat2 (r,Rt
n, ω) = −k2

0n2(r)ψ
scat
DWB(r,Rt

n, ω)

−k2
0n1(r)ψ

scat
1 (r,Rt

n, ω), (18)
...

[

∇2 + k2
0n

2
0(r)

]

ψscatl (r,Rt
n, ω) = −k2

0

l−1∑

m=0

nl−m(r)ψscatm (r,Rt
n, ω). (19)

The Green function for the left hand side operators of Eqns. 16 through 18 satisfies
[

∇2 + k2
0n

2
0(r)

]

G(r, r′, ω) = −δ(r − r
′). (20)

Note: this is not the background Green function of Eqn. 8. Using this to cast Eqn. 16 into an
integral equation, we obtain thedistorted wave Born approximationto the scattered field,

ψscatDWB(r,Rt
n, ω) = k2

0

∫

dr′ G(r, r′, ω) o(r′) ψinc(r′,Rt
n, ω). (21)
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Whenn0(r) ≡ 1, this reduces to the standardBorn approximation[8],

ψscatB (r,Rt
n, ω) = k2

0

∫

dr′ G0(r, r
′, ω) o(r′) ψinc(r′,Rt

n, ω). (22)

Comparing this to Eqn. 11, we see the Born approximation effectively replaces the total field with
the incident field.

2.2 Rytov Approximation

The Rytov approximation [8] starts with Eqn. 6 and the assumptions that the source term is either
identically zero (accurate if we consider a volume which excludes the source support),

p(r,Rt
n, ω) ≡ 0, (23)

or a plane wave with propagation vectorŝ,

p(r, ŝ, ω) ≡ P (ω) eik0ŝ·r; (24)

and that the total field can be expressed as

ψtot(r) = ψinc(r)ψscat(r) = eφi(r)eφs(r), (25)

whereφi(r) andφs(r) are the incident and scattered field complex phases, respectively, and the
total phase is

φ(r) = φi(r) + φs(r). (26)

For this section, we omit the explicit dependence of the fields on the temporal frequency,ω, and
references to the incident field (R

t
n for a point source, or̂s for a plane wave). We have the following

identities

∇ψtot(r) = ψtot(r)∇φ(r), (27)

∇2ψtot(r) = ψtot(r)
[

∇2φ(r) + (∇φ(r))2
]

. (28)

Using Eqn. 28, Eqn. 6 reads,

∇2φ(r) + (∇φ(r))2 + k2
0 = −k2

0o(r), (29)

which reduces to

∇2φ(r) + (∇φ(r))2 = −k2
0n

2(r), (30)

where we have used the definition of the object function from Eqn. 5.
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As in the Born approximation development, we expand the object function and total phase as
follows,

n2(r) = n2
0(r) + εn1(r) + ε2n2(r) + · · ·

︸ ︷︷ ︸

≡ δn(r)

,

φ(r) = φi(r) + εφscat1 (r) + ε2φscat2 (r) + · · · .

(31)

Substituting the expansions from Eqn. 31 into Eqn. 30 and collecting powers ofε, we find

∇2φi + (∇φi)2 = −k2
0n

2
0(r), (32)

∇2φ1 + 2∇φi · ∇φ1 = −k2
0n1(r), (33)

∇2φ2 + 2∇φi · ∇φ2 = −k2
0n2(r) − (∇φ1)

2 , (34)

∇2φ3 + 2∇φi · ∇φ3 = −k2
0n3(r) − 2∇φ1 · ∇φ2, (35)

...

∇2φl + 2∇φi · ∇φl = −k2
0nl(r) −

l−1∑

m=1

∇φm · ∇φl−m. (36)

Consider

∇2
(

ψinc(r)φs(r)
)

=
(

ψinc(r)φs(r)
) [

(∇φi(r))2 + ∇2φi(r)
]

+ψinc(r)
[

2∇φi(r) · ∇φs(r) + ∇2φs(r)
]

. (37)

Substituting Eqn. 32 and re-arranging terms, yields
[

∇2 + k2
0n

2
0(r)

] (

ψinc(r)φs(r)
)

= ψinc(r)
[

2∇φi(r) · ∇φs(r) + ∇2φs(r)
]

. (38)

Retaining only the first two terms in the expansion of Eqn. 31,

n2(r) ≈ n2
0(r) + n1(r),

φ(r) ≈ φi(r) + φscat1 (r) ≡ φi(r) + φs(r),
(39)

and using Eqn. 33, we obtain thedistorted wave Rytov approximation,
[

∇2 + k2
0n

2
0(r)

] (

ψinc(r)φs(r)
)

= −k2
0n1(r)ψ

inc(r). (40)

Using Eqn. 20, we cast this into an integral equation

φs(r) =
k2

0

ψinc(r)

∫

dr′ G(r, r′, ω) n1(r
′) ψinc(r′). (41)

From Eqn. 39, we observe that

n1(r) ≈ n2(r) − n2
0(r). (42)

Whenn0(r) ≡ 1, Eqn. 41 reduces to the classicalRytov approximation,

φs(r) =
k2

0

ψinc(r)

∫

dr′ G0(r, r
′, ω) o(r′) ψinc(r′). (43)
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2.3 Summary of Born & Rytov Approximations

The forward scattering equations for the Born and Rytov approximations have identical forms for
the quantity they approximate: the scattered amplitude forthe former, and the scattered phase for
the latter. We repeat them here,

ψscatB (r,Rt
n, ω) = k2

0

∫

dr′ G0(r, r
′, ω) o(r′) ψinc(r′,Rt

n, ω), (44)

φs(r) =
k2

0

ψinc(r)

∫

dr′ G0(r, r
′, ω) o(r′) ψinc(r′). (45)

We may compactly express these two equations as

Uscat(r) = C(r) k2
0

∫

dr′ G0(r, r
′, ω) o(r′) ψinc(r′), (46)

where we have the following definitions

Uscatt(r) ≡







ψscatB (r,Rt
n, ω) for the Born approximation,

φs(r) for the Rytov approximation,
(47)

C(r) ≡







1 for the Born approximation,

1

ψinc(r)
for the Rytov approximation.

(48)

2.4 Incident Fields

Usually, the incident field is taken to be either a plane with unit propagation vector̂s or spherical
wave due to a point source located atR

t
n. We express these mathematically as

ψinc(r) =







P (ω) eik0ŝ·r plane wave,

P (ω)G0(r,R
t
n, ω) spherical wave,

(49)

whereP (ω) is the temporal spectrum of the incident field, andG(r, r′, ω) is the Green function
response of the medium.

We summarize the forward models of Eqn. 46 as follows:

Uscat(r, ŝ) = C(r) P (ω) k2
0

∫

dr′ G0(r, r
′, ω) o(r′) eik0ŝ·r

′

, (50)

Uscat(r,Rt) = C(r) P (ω) k2
0

∫

dr′ G0(r, r
′, ω) o(r′) G0(r

′,Rt, ω). (51)

With our forward models in hand, we are now prepared to develop a method for inverting them to
determine the scattering object based upon a set of scattered field measurements. We derive the
“classical” plane wave diffraction tomography algorithm [9] in the following section.
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3 Inversion Using Incident Plane Wave and Planar Measure-
ment

Eqns. 50 and 51 represent two possible forward models depending upon the nature of the probing
source (either plane wave or point). The measurement systemrotates about the fixed object. We
label thefixed object coordinate systemby R ≡ (X, Y, Z). The axis of rotation is theY -axis. The
rotated coordinate systemis defined byr ≡ (x, y, z) = (−Z sin θ +X cos θ, 0, Z cos θ +X sin θ).
The relationship between the two coordinate systems is given by






x
y
z




 =






cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ











X
Y
Z




 (52)

We take thez-axis to be the major alignment axis of the measurement system. We assume a planar
measurement surface located atz = zp whose normal lies along thez-axis:

R
r = (x, y, zp) = (r⊥, zp) .

A schematic of the measurement system is presented in Figure1.
For future reference, the complementary rotated spatial Fourier variables are defined by

k · r = kxx+ kyy + kzz,

= kx (X cos θ − Z sin θ) + kyy + kz (X sin θ + Z cos θ) ,

= (kx cos θ + kz sin θ)X + kyY + (−kx sin θ + kz cos θ)Z,

= K · R, (53)

so that we have





Kx

Ky

Kz




 =






cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ











kx
ky
kz




 . (54)

3.1 Plane Wave Details & Fourier Diffraction Theorem

The forward scattering model is given by the approximation of Eqn. 50:

Uscat(Rr, ŝ) = C(Rr) P (ω) k2
0

∫

dr′ G0(R
r, r′, ω) o(r′) eik0ŝ·r

′

, (55)

where we now explicitly state the background Green function

G0(R
r, r′, ω) =

eik0|R
r−r′|

4π |Rr − r′| , (56)
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rotated

rotated fixed

rotated fixed

Figure 1: Schematic of measurement system. The plane wave propagation vector, ŝ, is given
by (sin θ, 0, cos θ) in the fixed object coordinate system. The point source location is given by
z0 (sin θ, 0, cos θ) in the fixed coordinate system. The entire measurement system rotates about the
y-axis which is out of the plane of the page.
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and

k0 ≡ ω

c0
(57)

is the background wave number. Substitute the Weyl expansion,

eik0|R
r−r′|

4π |Rr − r′| =
i

8π2

∫

dk′
⊥

ei(k
′

⊥
·(r⊥−r

′

⊥)+γ(ω)|zp−z′|)

γ(ω)
, (58)

whereγ(ω) ≡
√

k2
0 − |k′

⊥|2, andR
r ≡ (r⊥, zp), into Eqn. 55

Uscat(Rr, ŝ) =
i C(Rr) P (ω) k2

0

8π2

∫

dr′
∫

dk′
⊥

eik
′

⊥
·(r⊥−r′

⊥)+γ(ω)|zp−z′|

γ(ω)
o(r′) eik0(ω)ŝ·r′. (59)

We note that for the transmission mode measurement system depicted in Figure 1,zp > z′ so that
we may set

|zp − z′| = zp − z′ (60)

to achieve

Uscat(Rr, ŝ) =
i C(Rr) P (ω) k2

0

8π2

∫

dr′
∫

dk′
⊥

ei(k
′

⊥
·(r⊥−r′

⊥)+γ(ω)(zp−z′))

γ(ω)
o(r′) eik0(ω)z′ ,

=
i C(Rr) P (ω) k2

0

8π2

∫
dk′

⊥

γ(ω)
ei(k

′

⊥
·r⊥+γ(ω)zp) ×

∫

dr′ o(r′) e−i(k
′

⊥
·r′

⊥
−(k0(ω)−γ(ω))z′). (61)

Using the spatial Fourier transform pair definitions from Appendix A,

ψ̃(k) =
∫

dr ψ(r) e−ik·r, (62)

ψ(r) =
1

(2π)n

∫

dk ψ̃(k) eik·r, (63)

wheren is the dimensionality of the transform, we conclude ther
′ integral in Eqn. 61 is the spatial

Fourier transform of the object:

O (k′
⊥, k

′
z) =

∫

dr′ o(r′) e−i(k
′

⊥
·r′

⊥
−(k0−γ(ω))z′), (64)

wherek′z ≡ − (k0 − γ(ω)). Eqn. 61 then reads

Uscat(r⊥, zp, ŝ) =
i C(Rr) P (ω) k2

0

8π2

∫
dk′

⊥

γ(ω)
ei(k

′

⊥
·r⊥+γ(ω)zp) O (k′

⊥, k
′
z) . (65)
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We digress briefly to examine theC(Rr) factor under the Born and Rytov approximations. We
have

C(Rr) =







1 for the Born approximation,

1

ψinc(r)
=

e−ik0ŝ·R
r

P (ω)
=

e−ik0zp

P (ω)
for the Rytov approximation.

(66)

We noteC(Rr) is independent of the planar measurement variabler⊥. This is significant because
we now perform a planar Fourier transform (PFT) of the measured scattered quantity1,

Ūscat(k⊥, zp, ŝ) =
∫

dr⊥ U
scat(r⊥, zp, ŝ) e

−ik⊥·r⊥,

=
i C(Rr) P (ω) k2

0

8π2
×

∫
dk′

⊥

γ(ω)

[∫

dr⊥ e
i(k′

⊥
−k⊥)·r⊥

]

eiγ(ω)zp O (k′
⊥, k

′
z) . (67)

We use the identity

δ (k′
⊥ − k⊥) =

1

(2π)n−1

∫

dr⊥ e
i(k′

⊥
−k⊥)·r⊥, (68)

to reduce Eqn. 67 to

Ūscat(k⊥, zp, ŝ) =
i C(Rr) P (ω) k2

0 e
iγ(ω)zp

2γ(ω)
O (k⊥, kz) . (69)

Eqn. 69 relates then-dimensional Fourier transform of the object to the(n−1)-dimensional planar
transform of the measured scattered field (Born approximation) or the measured scattered phase
(Rytov approximation). It is known as theFourier Diffraction Theoremin wave-based tomography
and is the equivalent of theFourier Slice Theorem[10] of straight-ray tomography. Explicitly,
we have the measured field (phase) on thek⊥ plane which is proportional to the object Fourier
transform in the(k⊥, kz) space. This appears at first to be a mapping from ann-dimensional
function to a(n− 1)-dimensional function. Note, however, thatkz depends uponk⊥ via

kz ≡ −
(

k0 −
√

k2
0 − |k⊥|2

)

. (70)

Thus, the relationship is a mapping of the(n − 1)-dimensional locus of points through then-
dimensional space described by(k⊥, kz), to the(n − 1)-dimensional Fourier space measurement
plane. Applying the coordinate rotation of Eqn. 54 to account for all measurement anglesθ, we

1Amplitude in the Born approximation or phase in the Rytov approximation
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have in the fixed object frame





Kx

Ky

Kz




 =






cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ











kx
ky

− (k0 − γ(ω))




 ,

=






kx cos θ + (k0 − γ(ω)) sin θ
ky

−kx sin θ − (k0 − γ(ω)) cos θ




 , (71)

where we have explicitly used the dependence ofkz on k0 andk⊥ ≡ (kx, ky). Curves ofKx(kx)
andKz(kx) are presented in Figure 2 for multiple values ofθ with |kx| ≤ k0. This constraint on
kx, or more generally the constraint that|k⊥| ≤ k0 is required to ensurekz remain real valued as
can be observed in Eqn. 70. For|k⊥| > k0, kz becomes complex and the resulting fields evanes-
cent. Although evanescent field tomography is possible, given the dimensions of the measurement
system with respect to the illuminating wavelength, it is not practical because no evanescent field
will reach the measurement plane.

Although our entire development has been inn-dimensions (for all intents, three dimensions),
the Fourier Diffraction Theorem is entirely two dimensional. Eqn. 71 shows the relationship be-
tween theKy andky dimensions to be one-to-one. That is, the mapping is one-to-one in the Fourier
variable complementary to the axis of rotation. Thus, in thethree Fourier dimensions, the loci of
points plotted in Figure 2 form a cylinder along theky axis, perpendicular to the plane of the page.

The Fourier Diffraction Theorem dictates the resolution ofthe reconstruction. Assume evanes-
cent fields are neglected, the resolution limit is governed by the Ewald sphere [8, 9] which indicates
the transition from propagating to evanescent fields. For this case of narrow-band transmission
mode tomography, this limit is inversely proportional to

√
2k0. Consider the spatial frequency

limit in inverse length (as opposed to radians),

√
2η ≡

√
2
√

η2
x + η2

z ,

=
√

2
k0

2π
,

=
√

2
f

c0
,

=

√
2

λ
, (72)

where we have used Eqn. 57,ω = 2πf , andc0 = fλ, wheref is the frequency of the illuminating
source. The spatial resolution limit is thusλ/

√
2 in the plane of rotation. In the perpendicular

domain, the resolution limit is governed by the spatial sampling along they-axis.
We are now prepared to invert Eqn. 69 in order to “reconstruct” the scattering object. In theory

it is a simple matter of solving for the object spectrum and performing an inverse Fourier transform.
However, we do not know the object’s spectrum on a Cartesian grid: we know it at the points
defined by Eqn. 71. Furthermore, lower spatial frequencies are sampled more densely by the
Fourier Diffraction Theorem than higher ones, with the zerofrequency (that is, DC) being sampled

11



0

0

Ewald Sphere

Figure 2: Graphical representation of the Fourier Diffraction Theorem of Eqn. 69. The curves
represent the loci of points given by Eqn. 71 in the object’s Fourier space. The Ewald sphere
defines the transition from propagating to evanescent field spectra.

the most: all curves pass through the origin. We account for these issues and develop an inverse in
the next section.

3.2 Plane Wave Inversion

Solving for the object spectrum of Eqn. 69 yields

O (k⊥, kz) = −i 2γ(ω) e−iγ(ω)zp

C(Rr) P (ω) k2
0

Ūscat(k⊥, zp, ŝ), (73)

in terms of the PFT of the measured scattered field.
For practical considerations, we neglect the evanescent field information and limit ourselves

to the propagating spectrum of|k⊥| ≤ k0. This yields a low pass reconstruction of the object as

12



indicated by the spectral coverage of Figure 2. We define the unit step function by

S(k) ≡
{

0 k < 0
1 k ≥ 0,

(74)

and write

Olp (k⊥, kz) = −i 2γ(ω) e−iγ(ω)zp

C(Rr) P (ω) k2
0

Ūscat(k⊥, zp, ŝ) S (k0 − |k⊥|) , (75)

where thelp subscript indicates we will be performing a low pass reconstruction.
We are now prepared to define the inverse Fourier transform ofEqn. 75 to obtain the low pass

object reconstruction. The inverse Fourier transform is

ô(R) =
1

(2π)n

∫

dK Olp(K) eiK·R, (76)

whereK is given by Eqn. 71. The object spectrum of Eqn. 76 is specifiedin terms of the Cartesian
coordinate system given byK = (Kx, Ky, Kz). The actual measured values of the spectrum are
known along the arcs given by






Kx

Ky

Kz




 =






kx cos θ + (k0 − γ(ω)) sin θ
ky

−kx sin θ − (k0 − γ(ω)) cos θ




 . (77)

In order to perform the integral of Eqn. 76, we must change theintegration variables from the
object spectrum’s Cartesian frame to those of the rotated frame of the incident plane wave. The
Jacobian of the transformation is

J (K;k) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂Kx/∂kx ∂Ky/∂kx ∂Kz/∂kx

∂Kx/∂ky ∂Ky/∂ky ∂Kz/∂ky

∂Kx/∂kz ∂Ky/∂kz ∂Kz/∂kz

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
k0 kx
γ(ω)

. (78)

We now express the inverse Fourier transform as

ô(R) =
−i2

(2π)n C(Rr) P (ω) k0

∫

|k⊥|<k0

dk⊥ |kx| e−iγ(ω)zp

∫ 2π

0
dθ Ūscat(k⊥, zp, ŝ) e

ik·r, (79)

where we have used Eqns. 54 and 73.

ô(R) =
−i2 e−ik0zp

(2π)n C(Rr) P (ω) k0

∫ 2π

0
dθ

∫ ∞

−∞
dk⊥ H(k⊥, z − zp) Ū

scat(k⊥, zp, ŝ) e
ik⊥·r⊥, (80)

where

H(k⊥, z) ≡ |kx| e−i(k0−γ(ω))z S (k0 − |k⊥|) . (81)

13



Eqn. 80 is the “standard” filtered backpropagation algorithm [9]. The |kx| expression represents
a filter which accounts for the non-uniform sampling of the Fourier Diffraction Theorem. The
producte−ik0zpe−i(k0−γ(ω))z represents a plane-to-plane backpropagation of the measured quantity
from the measurement plane to a plane within the object. Finally, the S (k0 − |k⊥|) expression
imposes the low-pass limit of the reconstruction require toremove evanescent fields which, when
backpropagated, diverge given their exponentially decaying nature in the forward propagation di-
rection.

4 Summary & Conclusions

We have developed a wave-based inversion and imaging algorithm which is applicable to the Opti-
cal Quadrature Microscope. We have assumed narrow-band plane wave illumination of the object
under evaluation. We have also assumed multiple planar measurements, uniformly distributed360◦

about the object, are possible while maintaining a fixed object to measurement plane distance.
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A Standard Fourier Transforms

We summarize without comment our Fourier transform definitions.

Forward in time

U(r, ω) =
∫ ∞

−∞
dt u(r, t) eiωt

Inverse in time

u(r, t) =
1

2π

∫ ∞

−∞
dω U(r, ω) e−iωt

Forward in space

Ũ(k, ω) =
∫ ∞

−∞
dr U(r, ω) e−ik·r

Inverse in space

U(r, ω) =
1

(2π)3

∫ ∞

−∞
dk Ũ(k, ω) eik·r
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